Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

نویسندگان

  • E. Namjoo Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
  • M. Naderan Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
  • S. Mohammadi Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده مقاله:

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an important role on recognizing a suitable product or specific user. The inference mechanism of trust in social media refers to utilizing available information of a specific user who intends to contact an unknown user. This mostly occurs when purchasing a product, deciding to have friendship or other applications which require predicting the reliability of the second party. In this paper, first the raw data of the real world dataset, Epinions, is examined, and the feature vector is calculated for each pair of social network users. Next, fuzzy logic is incorporated to rank the membership of trust to a specific class, according to two-, three- and five-classes classification. Finally, to classify the trust values of users, three machine learning techniques, namely Support Vector Machine (SVM), Decision Tree (DT), and k-Nearest Neighbors (kNN), are used instead of traditional weighted sum methods, to express the trust between any two users in the presence of a special pattern. The results of simulation show that the accuracy of the proposed method reaches to 91%, and unlike other methods, does not decrease by increasing the number of samples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

Email Classification Using Machine Learning Algorithms

Email has become one of the frequently used forms of communication. Everyone has at least one email account. Inflow of spam messages is a major problem faced by email users. Currently there are many spam filtering techniques. As the spam filtering techniques came up, spammers improved their methods of spamming. Thus, an effective spam filtering technique is the timely requirement. In this paper...

متن کامل

Classification using Machine Learning Algorithms (MALA)

This report summarizes the results of our work on trying to predict the health of a baby. We used two different machine learning algorithms, Weka and our own Naive Bayes Classifier. We discovered that placental ratio and Term/Preterm Birth yield interesting results, based on our list of 19 features. While the placental ratio results are puzzling, we learned that the two features Eclampsia and C...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره 3

صفحات  294- 309

تاریخ انتشار 2019-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023